Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Ruscogenin alleviates palmitic acid-induced endothelial cell inflammation by suppressing TXNIP/NLRP3 pathway

Hongtao Liu, Simin Zheng, Hongfei Xiong, Xiaoli Niu

Department of Anesthesia, Second Affiliated hospital of Xi’an JiaoTong University, Xi'an City, Shaanxi Province 710004, China;

For correspondence:-  Xiaoli Niu   Email: AXZE90kl@163.com   Tel:+862987679696

Accepted: 24 July 2020        Published: 31 August 2020

Citation: Liu H, Zheng S, Xiong H, Niu X. Ruscogenin alleviates palmitic acid-induced endothelial cell inflammation by suppressing TXNIP/NLRP3 pathway. Trop J Pharm Res 2020; 19(8):1605-1610 doi: 10.4314/tjpr.v19i8.6

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the involvement of ruscogenin in palmitic acid (PA)-induced endothelial cell inflammation.
Method: Cultured human umbilical vein endothelial cells (HUVECs) were divided into five groups: control (normal untreated cells), PA (cell treated with palmitic acid), and PA + ruscogenin (1, 10, or 30 μM). Cell viability and apoptosis rate were determined using MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazolium bromide) and flow cytometry assays, respectively. The levels of cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemo-attractant protein-1 (MCP-1) were determined by an enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to evaluate the underlying mechanisms of action.
Results: PA treatment decreased the viability of HUVECs and induced apoptosis (p < 0.05). Ruscogenin attenuated PA-induced cell death in a dose-dependent manner (p < 0.05). On the other hand, PA induced an increase in IL-1β, TNF-α, ICAM-1, MCP-1, TXNIP (thioredoxin-interacting protein), as well as NLRP3 (nucleotide oligomerization domain-, leucine-rich repeat- and pyrin domain-containing protein 3), all of which were attenuated by ruscogenin (p < 0.05).
Conclusion: Ruscogenin alleviates PA-induced endothelial cell inflammation via TXNIP/NLRP3 pathway, thereby providing an insight into new therapeutic strategies to treat cardiovascular diseases.

Keywords: Ruscogenin, Palmitic acid, Endothelial cells, Inflammation, TXNIP, NLRP3, Cardiovascular diseases

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates